Week 10

10.1 Ideals

Definition. An ideal / in a commutative ring R is a subset of R which satisfies
the following properties:

1. 0 e I;
2. Ifa,be I, thena+0be€ I
3. Foralla € I, we have ar € I forall r € R.

If an ideal I is a proper subset of 12, we say it is a proper ideal.

Remark. Note that if an ideal I contains 1, thenr = 1-r € [ for all » € R, which
implies that I = R.

Example 10.1.1. For any commutative ring R, the set {0} is an ideal, since 0+0 =
0,andO-r=0forall r € R.

R itself is also an ideal.

Anideal I C R is called proper and an ideal {0} C / C R is called nontriv-
ial.

Example 10.1.2. For all m € Z, the set [ = mZ := {mn : n € Z} is an ideal:
I.0=m-0€e;
2. mny +mng =m(ny +ng) € 1.
3. Givenmn € I, foralll € Z, wehave mn -l =m -nl € 1.

Example 10.1.3. Generalizing the above example, consider a commutative ring
R. Leta € R. Then
(a) :={ra:r € R}

is an ideal, called the principal ideal generated by a.
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Proof. 1. 0=10a € (a);
2. Given rya,m9a € (a), we have ria + roa = (11 + 12)a € (a).

3. Forall ra € (a) and a € R, we have s(ra) = (sr)a € (a).
L]

More generally, given any nonempty subset A C R, the set of finite linear
combinations of elements in A:

(A) :={ria; + a9 + -+ +rkay : k € Zso,7; € R,a; € A}
is an ideal in R, called the ideal generated by A.

Proposition 10.1.4. If ¢ : R — R’ is a ring homomorphism, then ker ¢ is an ideal
of R.

Proof. 1. Since ¢ is a homomorphism, we have ¢(0) = 0. Hence, 0 € ker ¢.

2. If a,b € ker¢, then ¢(a + b) = ¢(a) + ¢(b) = 0+ 0 = 0. Hence,
a+b € ker ¢.

3. Given any a € ker ¢, for all » € R we have ¢(ar) = ¢(a)p(r) =0-¢(r) =
0. Hence, ar € ker ¢ for all » € R.
O

Example 10.1.5. Recall the homomorphism ¢ : Z — Z,, defined by ¢(n) = 7.
The kernel of ¢ is:
ker ¢ = mZ = (m).

Proposition 10.1.6. A nonzero commutative ring R is a field if and only if its only
ideals are {0} and R.

Proof. Suppose a nonzero commutative ring R is a field. If an ideal [/ of R is
nonzero, it contains at least one nonzero element a of K. Since R is a field, a
has a multiplicative inverse ¢! is R. Since I is a ideal, and a € I, we have
1 =a"ta € I. So, I is an ideal which contains 1, hence it must be the whole field
R.

Conversely, let R be a nonzero commutative ring whose only ideals are {0}
and R. Given any nonzero element a € R, the principal ideal (a) generated by
a is nonzero because it contains a # 0. Hence, by hypothesis the ideal (a) is
necessarily the whole ring R. In particular, the element 1 lies in (a), which means
that there is an 7 € R such that ar = 1. This shows that any nonzero element of
R is a unit. Hence, R is a field. O]
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Proposition 10.1.7. Let F' be a field, and R a nonzero ring. Any ring homomor-
phism ¢ : ' — R is necessarily one-to-one.

Proof. Since R is not a zero ring, it contains 1 # 0. So, ¢(1) = 1 # 0, which
implies that ker ¢ is a proper ideal of F'. Since F'is a field, we must have ker ¢ =
{0}. It now follows from a previous claim that ¢ is one-to-one. UJ

10.2 Quotient Rings

Let R be a commutative ring. Let I be an ideal of R. Then in particular [ is an
additive subgroup of (R, +). Let R/I denote the set of all cosets of [ in (R, +),
namely, the set of elements of the form

r=r+I={r+a:a€l}, reR.

Terminology: We sometimes call 7 the residue of 7 in R/1.

Note that # = 0 if and only if € I; more generally, 7 = 7/ if and only if
r—r'el.
Remark. Recall that R/I is nothing but the set of equivalence classes of the

following relation on I:
a~b, ifb—acl.

Notation/Terminology: If a ~ b, we say that a is congruent modulo / to b, and
write:
a=b mod .

It is tempting to define addition and multiplication on R/ using those opera-
tions on R:

Ry
Il

T+

7.

/ 7"+7",,

/
rr,

Ry
Il

for any 7,7’ € R/I.
Observe that: for all 7,7’ € R, and a,d’ € I, we have

(r+a)+ (" +d)y=@r+r)+(a+d)e(r+r)+I=r+1,

which implies (7 + a) + (7" + a’) = r + /. So addition + is indeed well-defined
on R/I. Note that this only used the fact that [ is an additive subgroup of (R, +).
On the other hand, we have the following

Theorem 10.2.1. Given any additive subgroup I < (R, +). The multiplication

rer =nrr

is well-defined on R/ if and only if I is an ideal in R.
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Proof. Suppose that [ is an ideal. Then for any r,7’ € R, and a,a’ € I, we have
(r+a)-(r'+d)=r'"+rd +r'atad €rr'+1=rr.

Hence the multiplication is well-defined.

Conversely, suppose the multiplication is well-defined, meaning that for any
r,r’ € Rand a,a’ € I, we have (r +a')(r' +a) = rr’. In particular, we have
7a = (r +0)(0+a) = r0 = I which implies ra € I forany r € Rand a € I.
So I is an ideal. O]

Proposition 10.2.2. The set R/ I, equipped with the addition + and multiplication
- defined above, is a commutative ring.

Proof. We note here only that the additive identity element of R/l is 0 = 0 + I,
the multiplicative identity element of R/ is 1 = 1 + I, and that —7 = —7 for all
r e R.

We leave the rest of the proof (additive and multiplicative associativity, com-
mutativity, distributive laws) as an Exercise. OJ

Proposition 10.2.3. The map 7 : R — R/1, defined by
w(r)=7, VYre€R.
is a surjective ring homomorphism with kernel ker m = 1.
Proof. Exercise. ]

Theorem 10.2.4 (First Isomorphism Theorem). Let ¢ : R — R’ be a ring

homomorphism. Then:
R/ ker ¢ = im ¢,

(i.e. R/ ker ¢ is isomorphic to im ¢.)
Proof. We define amap ¢ : R/ ker ¢ — im ¢ as follows:

o(F) = o(r), VreR,

where 7 is the residue of r in R/ ker ¢.
We first need to check that ¢ is well-defined. Suppose 7 = 77/, then 7’ — r €
ker ¢. We have:

O(r') = o(T) = o(r') = ¢(r) = ¢+ — 1) = 0.

Hence, ¢(1) = ¢(F). So, () is defined regardless of the choice of representative
for the equivalence class 7.
Next, we show that ¢ is a homomorphism:
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o o(1) =0(1) =1
o ¢(@+b)=¢(a+0b)=ola+b)=0o(a) + ¢(b) = ¢(a) + 6(b);

o §(a-b) = ¢(ab) = p(ab) = $(a)d(b) = H(@)(b).

Finally, we show that 5 is a bijection, i.e. one-to-one and onto.

For any 7/ € im ¢, there exists 7 € R such that ¢(r) = r’. Since ¢(7) =
¢(r) =1', ¢ is onto.

Let 7 be an element in R such that ¢(7) = ¢(r) = 0. We have r € ker ¢,
which implies that 7 = 0 in R/ ker ¢. Hence, ker ¢ = {0}, and it follows that ¢ is
one-to-one. UJ

Corollary 10.2.5. If a ring homomorphism ¢ : R — R is surjective, then:
R' = R/ker ¢

Example 10.2.6. Let m be a natural number. The remainder or mod m map
¢ : 7 — Z,, defined by:

o(n)=m, VnéeLZ,

where 7 is the remainder of the division of n by m, is a surjective homomorphism
such that ker ¢ = (m) = mZ. So, it follows from the First Isomorphism Theorem
that:

L, = 7/ M.

Example 10.2.7. The ring Z[i] /(1 + 3i) is isomorphic to Z/10Z.
Proof. Define a map ¢ : Z — Z[i]/(1 + 3i) as follows:

¢(n)=n, VYnelL,

where 7 is the equivalence class of n € Z[i| modulo (1 + 37).
It is clear that ¢ is a homomorphism (Exercise).
Observe that in Z[i|, we have:

14+3i=0 mod (1+ 3i),

which implies that:
i=3 mod (1+ 3i).

Hence, for all a, b € Z,

a+bi=a+3b=¢(a+ 3b)
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in Z[i] /(1 + 317). Hence, ¢ is surjective.
Suppose 7 is an element of Z such that ¢(n) = 7 = 0. Then, by the definition
of the quotient ring we have:
n e (1+ 3i).

This means that there exist a, b € Z such that:
n = (a+bi)(1+3i) = (a—3b) + (3a + b)i,
which implies that 3a + b = 0, or equivalently, b = —3a. Hence:
n=a—3b=a—3(—3a) = 10a,

which implies that ker ¢ C 10Z. Conversely, for all m € Z, we have:

$(10m) = T0m = (1 + 3i)(1 — 3i)m = 0

in Z[i] /(1 + 3i). This shows that 10Z C ker ¢. Hence, ker ¢ = 10Z.
It now follows from the First [somorphism Theorem that:

ZJ10Z = Z[i] /(1 + 3i).

Example 10.2.8. The rings R[z]/(z? + 1) and C are isomorphic.
Proof. Define a map ¢ : R[x] — C as follows:

QS(Z apx®) = Z axi®.
k=0 k=0

Exercise: ¢ is a homomorphism.
For all a 4+ bi (a,b € R) in C, we have:

o(a+bx) = a + bi.

Hence, ¢ is surjective.

It remains to compute ker ¢ = {f(z) = Y_;_,az* : f(i) = 0}. Note that
f(z) is a real polynomial, so f(i) = 0 also implies that f(—i) = 0. Hence
both +i are roots of f(z) if it lies in ker ¢. Factor Theorem then tells us that
(22 4+1) = (x —i)(x +1) | f(z). Soker¢ C (z* + 1). On the other hand, i is a
root of 22 + 1, so we have (22 + 1) C ker ¢. We conclude that ker ¢ = (2% + 1).

It now follows from the First Isomorphism Theorem that R[z]/(2? + 1) = C.

[l
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